Physics Informed Deep Learning for Flow and Transport in Porous Media

Cedric Fraces Gasmi

cfraces@stanford.edu

Abstract

We propose a new method for the forecasting of flow and
transport problem in porous media. The method is a fast
and efficient way to generate surrogate responses to the var-
ious realizations of a simulation model. It is an alternative
to the CPU and time consuming finite volume simulation of
the pressure and fluids concentrations. The model is built
using a convolutional network encoder decoder architec-
ture that takes the reservoir permeability as an input and
outputs the pressure and saturation fields at various time
steps. We propose to solve the SPE10 reservoir simulation
case (top layer) and various delineations of it (1000 real-
izations). We cast the problem as an image to image regres-
sion. We predict the distribution of two quantities of interest
(pressure and saturation) after training on a few timesteps
for a few hundred realizations and then predict on unseen
realizations and time steps. The result is a neural network
based simulator that honors the very nonlinear nature of the
Sflow with a high fidelity and can be run in a fraction of the
time required for the classical finite volume scheme. This
type of high fidelity surrogate can be used for uncertainty
quantification which typically requires a large number of
function evaluations.

1. Introduction

Data driven models are widely used for reservoir fore-
casting problems and uncertainty quantification. Such mod-
els are important as they support decision making in the
face of risk. A key problem in subsurface flow is to re-
solve concentration shocks and rarefaction waves result-
ing from the multi-phase transport conservation laws (so-
called Buckley-Leverett solution) to the Riemann problem.
Classical surrogate models (Gaussian processes, polyno-
mial chaos expansion) are commonly used but fail to cap-
ture non linear behavior for large dimensional systems. This
project proposes a new hybrid machine-learning/physics-
based approach to reservoir modeling. The model is a
neural network that is jointly trained to match any avail-
able experimental data and respect governing physical laws.
The input of this method are images of permeability fields.

Jihoon Park
jhpark3@stanford.edu

Dong Hee Song
dhsong@stanford.edu

The network architecture can be easily modified to adjust
to different image sizes. We then use a network based on
encoder-decoder architecture with a modified loss function
to predict the space and time evolution of pressure and sat-
uration within the reservoir. The modification to the loss
function encourages physical solutions by penalizing devi-
ations from the governing physics. The training data was
generated by using state of the art simulation methods.The
proposed methodology is a simple and elegant way to in-
still physical knowledge to machine-learning algorithms.
This method aims to alleviate two significant shortcomings
of machine-learning algorithms: the requirement for large
datasets and the reliability of extrapolation. We essentially
draw from the work of Perdikaris et al. [14] and Zabaras et
al. [10]. The input to our algorithm is a permeability field
that is intepreted as an image with only one color channel.
We use a CNN encoder-decoder architecture to output a pre-
dicted pressure and saturation field at various time steps.
The trained model is able to match the simulator results to a
high degree of accuracy. The hyper-parameters were tuned
with experiments. The principles presented in this paper
can be applied in innumerable ways in the future and should
lead to a new class of algorithms to solve both forward and
inverse physical problems.

2. Related Work and Background

Data driven approaches have been supporting decisions
in the oil and gas industry since its inception. Arps in-
troduced decline curve analysis (DCA) in 1945 [1]. DCA
is based on empirical observations that the decline rate of
production in oil reservoirs follow exponential, harmonic,
or hyperbolic decline rates. Later, the exponential decline
was found to be physically based in the production of a
single phase fluid from a closed reservoir for through the
works of Brons(1963)[2]], Fetkovich et al. (1971)[4], and
Fetkovich et al. (1980)[3]. Furthermore, justification of de-
viation from the exponential decline model is provided in
chapter 9 of Lake(2009)[8]]. Models based on physics and
data have been at the driving the oil and gas industry.

The current industry standard for models is reservoir
simulation. A common workflow is to build a simulator
based on a geological realization (geomodel) and then up-

date this simulator based on actual production data. These
simulators are typically based on the finite volume ap-
proach to solving PDE’s and have gained massive popu-
larity as computation power became more accessible. The
strength of simulators is that multiple physical effects and
non-linearities can be computed [9)]. However, this process
can be computationally expensive, and this cost is amplified
when many runs are required of the simulator (e.g. uncer-
tainty quantification based on Monte Carlo methods). The
computational complexity of full numerical simulation typ-
ically grows quadratically with the number of degrees of
freedom N as the linearization of the system of PDE’s re-
quires the computation of a jacobian matrix that has N?2
elements.

Advancements in deep learning methods have inspired
attempts to replace some of the tasks traditionally per-
formed by simulation with neural network based meth-
ods. The works of Perdikaris et al. [14, [15]] and Rassi[13]]
have introduced physics informed neural networks (net-
works that learn while adhering to physics) and networks
which honor the governing physics itself. Zabaras et al. [[10]
uses a encoder-decoder network architecture to create surro-
gate models for predicting the pressure and saturation evo-
lution in time and space. In another work, Zabaras also in-
troduces a methodology which incorporates the governing
equations of the physical model in the loss functions [18].
Karpatne et al. [[7] have introduced another framework for
combining physical knowledge with neural networks using
a physics-based loss function. This study draws inspiration
from the work done by Perdikaris and Zabaras.

3. Methods

The goal is to construct a surrogate model of reservoir
simulator by performing image-to-image regression with
CNN. We follow the formulation proposed by [10]. Input
x € RP is log-permeability field (unit of log miliDarcy, In-
md), where D = H X W = height x width. The outputs
consist of three variables which are spatial-temporal pres-
sure map P e RPXT gaturation map Sii e RPXT and
another spatial-temporal variable £/ € RP*T which is bi-
nary variable that indicates whether water invades a certain
cell. Here, the subscripts ¢ and j are used to denote pixel
and time, respectively. It should be noted that each input
and output are considered as time-dependent images. As a
result, the deep neural network model f can be formulated
as:

g7 = f£(x',t;;0) (1)

Where 0: neural network parameters, ¢;: specified time-
step.
The variable £%7 is defined as:

Extract high level

Dense Block
K24L4

Dense Block Dense Block
K24L4 K24L9

Figure 1. Network configuration used for training. It is modified
from [10]. L and K means the number of internal layers and
constant growth rate, respectively

1,
chi = {1 59> 0.2 o
0 otherwise

As seen in Eq. , ¢ depends on S%J. This variable is in-
troduced by [10] to describe discontinuous waterfront. The
training is performed in two stages, the first stage to learn
Eq. (I) and the second stage to learn Eq. (2). The objective
functions at each stage are mean squared error and binary
cross entropy, see Section 5 for details. We use batch nor-
malization and Adam optimizer to minimize both objective
functions.

Every pixel value of the permeability field map be per-
ceived as one pixel of an image (single channel). In this
research, we utilize the neural network design proposed by
[LO]. However, their images have dimensionality of 50 x 50,
whereas the dimensionality of reservoir differs by cases. In
our example, which is SPE10 field, the dimensionality is 60
x 220. One of contributions of this research is to explore
the possibilities of transfer learning instead of designing the
neural network configurations from scratch. By doing so,
the learning can be easily generalized.

The network architecture is based on deep convolutional
encoder-decoder network [10]. Figure |I|illustrates the net-
work architecture trained in this report. The first flatten and
dense layer (linear) is to decrease the dimensionality of in-
puts from 60 x 220 to 50 x 50. Another way to do achieve
this is to redesign filter and strides for convolutional layer.
However, we do not take this approach because the pre-
exisiting network was already optimized for square images
and filters.

A dense block consists of consecutive layers performing
batch normalization, ReLU and convolution. The outputs of
dense block are fed to encoding or decoding layers. Consec-
utive dense blocks and encoding layers are to extract high
level features from permeability maps with dimensionality
reduction. Repeated decoding layers are to map the low
dimensional features to outputs. Table [T| summarizes con-
figuration of neural network architecture.

coarse feature maps

Table 1. Network architecture used in this report. This is modified
from [10]. Nou: denotes the number of output feature map. k’=
kernel size, s =stride, p= padding.

Layers Nyyt Output dimension
Input 1 60 x 220
Flatten Layer 1 13,200
Dense Layer 1 2,500
Reshape Layer 1 50 x 50
Convolution (k'7s2p3) 48 25 x 25
Dense Block 1(K24L4) 144 25 x 25
Encoding Layer 72 13 x 13
Dense Block 1(K24L9) 289 13 x 13
Decoding Layer 1 144 25 x 25
Dense Block 3 (K24L4) 240 25 x 25
Decoding Layer 2 3 50 x 50
Flatten Layer 1 7,500
Dense Layer 1 39,600
Reshape Layer 3 60 x 220
Normalization Layer 3 60 x 220

4. Dataset and Features

In this report, we use the top layer of SPE10 field [17].
SPEI10 field has the dimensionality of 60 x 220 and it is
assumed that log permeability follow multivariate normal
distributions, see Figure [2| (left). 1,000 realizations of per-
meability field are generated by Monte Carlo sampling and
output pressure and saturation maps are obtained by solving
the governing PDE’s and relationships for reservoir simula-
tion provided in The PDE can be solved by
running the commercial reservoir simulator, Schlumberger
ECLIPSE [16].

o, Se
V- Du(Vepyw =7V - 2)] = 8t[¢B] + Gu
ol . S,
V. [Ao(v *Po — PYOV ° Z)] = 5 |:¢B:| + Qo 3)
Pc:po_pw :f(sw)

Sw+ S, =1

Where, A: mobility, S: saturation, : specific gravity, B:
formation volume factor, ¢: production rate, P: pressure,
P,: capillary pressure. Subscripts w and o indicate water
and oil, respectively. Mobility X is proportional to perme-
ability k. We are interested in mapping k to P and S.

The water is injected at the center and fluids (oil and wa-
ter) are produced at four corners of the rectangular reser-
voir. However, due to spatial variation of permeability, the
water propagation is asymmetric. Water tends to propagate
to high permeability region, see Figure [2] for such exam-
ples. The time for training is chosen as 50, 100, 200, 500,
1,000 and 2,000 day, see Figures [7] and [§] which show how

pressure, saturation, and waterfront evolve over time. 1,000
samples are split to various ratios (800/200, 700/300,...,
200/800) to prepare training and test sets.

5. Experiments/Results/Discussion

For this analysis, we focus on the 2D results with a map-
ping of pressure and saturation fields through time. The
case we present is more complex than the one presented in
[LO] and we had to add extra-layers to the existing architec-
ture (see Method section). Because of the non-linear nature
of the PDE’s governing this flow problem, slight variations
in the input permeability field lead to very different out-
come in terms of pressure and saturation maps as seen in
Figure[2| Some plumes percolate to all 4 wells while others
are routed to one or two wells. This is due to the depen-
dency of relative permeability on saturation. We train our
model on a fixed set of realizations at given time steps and
predict the saturation and pressure plumes on a different set
of permeabilities. We select the best fit in terms of RMSE
and R?-score over an ensemble of cases. We were able to
achieve good accuracy (R? in the order of 88% for testing
and over 95% for training) as dhown in figure[6] We show
how performance degrades as we remove training samples
and how we can alleviate some of these issues using regu-
larization.

5.1. Experiments

We have run extensive experiments on various hyperpa-
rameters of the model. We use Tesla P100 GPU for most
of our hyper-parameter search. Every run takes about 10
minutes and we are able to perform 400 using the credits al-
located for the class. We monitor both the root mean square
error (RMSE) and the R2-score of calculated pressure and
saturation at randomly selected points outside of the train-
ing space. We also add binarized saturation fields and com-
plemented this loss with a segmentation loss in order to cap-
ture the non linear saturation front.

N

) ly* =¥
RP=1-=1 @)
ly' -5

M=

=1

Where y’ is the true pressure or saturation coming from
ECLIPSE simulation, yi is the output from our CNN model

N .
and y = % > yi A R2-score close to 1 corresponds to
i=1
a good surrogate model. We also monitor the RMSE for
training and test error convergence.

N
1 i $il|2
RMSE = N;Hy ~3I13)

9000
8000
7000
6000
5000

9000
8000
7000
6000
5000

9000
8000
7000
6000
5000

9000
8000
7000
6000
5000

9000
8000
7000
6000
5000

1
a i05
0
50 100 150 200
1
i05
0

20 X

40 .

60 b
50 100 150 200

{

100 150 200

100 150 200

20

40

60
100 150 200

20

40

50 100 150 200 ’
50 100 150 200 '

60 _ i 0
50 100 150 200

100 150 200

Figure 2. Five examples of input and outputs, Each column indicates log permeability (input), pressure, saturation, and binary variable &.

For outputs, the time is fixed to t = 200 days.

As recommended in [10]], we add a binary cross entropy loss
in order to improve the training performance and introduce
more physics to the model. It is defined as:

1 N HW .
BOE = Npw 2 Z:Z 1€5uis) — €Sui)) (©)

Where H and W are the height and width dimension of the
filed (60 and 220 in our case), £ is a binary transformation
that is equal to 1 if the saturation exceeds conate water sat-
uration and 0 otherwise. This additionnal loss has proven to
improve training performance compared to our milestone
case. We scale the loss with a factor A and test different
values in our hyper-parameter analysis. The final loss is:

LMSE =RMSE + ABCE @)

[lustrations of the quantities of interest is represented in
Figure[2] The quantities y represent pressure and saturation
depicted in the two middle columns of Figure 2] while £(5)
is represented on the right.

The model features numerous hyper-parameters and we
were able to isolate the ones that led to best results in terms
of RMSE, BCE and R? score. We limit the training time
to 200 epochs in order to be able to run more cases. We
also use batch sizes of 512, 256 and 128 (with better overall
results with 256). The number of layers per block is fixed
as it is not a straightforward parameter to tune (change of

dimension to take into account). The dimensions of the la-
tent space and the time steps at which the training data was
collected are fixed (50, 100, 200, 500, 1000, 2000) as shown
in Figure[§] We perform a random search (rather than grid
search) on the following:

e Number of training examples : [200, 300, 400, 500,
600, 700, 800]

dropout rate : [0, .1, .2, .3, .4, .5]

learning rate : [le-4, Se-4, 0.001, 0.005, 0.01]

weight decay : [le-4, Se-4, le-3]

A scaling : [0.005, 0.01, 0.05, 0.1]

We present the results of the experiments in the form of box
plots (Figures 3]] [B). This representation helps see the
overall distribution of scores with respect to the hyperpa-
rameters and allows identifying trends that are statistically
more sound than if we used single cases. On each box, the
central mark indicates the median, and the bottom and top
edges of the box indicate the 25th and 75th percentiles, re-
spectively. The whiskers extend to the most extreme data
points not considered outliers, and the outliers are plot-
ted individually using the '+ symbol. Figure [3] shows the
relative distributions of R2-scores on a test set versus the
number of epochs and training samples. These are the two
most important hyperparameters according to our sensitiv-
ity analysis. They affect R2-score both in average value and

Tasennn
il
|

-
L =
P PPV R B = S

)t
8
B
s
it P

RO
Z “:”i”:“i::gj
1
{Th
«Hh
- HH
HIH
~+{[h

i)

e m.;uA:DH

i

i

SESE

ISSSRE

Sl
;

+

Figure 3. Box plot of R?-scores vs number of epochs (left) and
number of training sample (right) for all the experiments run.

L 1

PORERE

test score
R test score

T

I

|

|

|

|

|

|

|
E

Figure 4. Box plot of R?-scores vs dropout rate (left) and learning
rate (right) for all the experiments run.

0 B B[00

+ A —+

Figure 5. Box plot of R%-scores vs weight decay (left) and contri-
bution of the BCE loss (right) for all the experiments run.

variance. Figure [] shows that a larger dropout does not im-
prove the generalization error in this case and even leads to a
degradation for values above 0.3. Surprisingly, the learning
rate does not seem to have a large effect on the final out-
come. Very small learning rate (10~#) increases the spread
and leads to worse answers overall. Figure [5| shows that a
weight decay of 5 x 10~ leads to the best overall results
while a 0.05 weight on the BCE loss leads to slightly better
results. In the next section, we look at specific results and
have a more qualitative assessment of the “goodness of fit”
for all these cases.

5.2. Results

Although we undestand what hyperparamters generally
lead to better performances in prediction, we focus on a cou-
ple of representative cases in order to understand the quality
of the output generated by our model. The best scenario in
terms of testing error is obtained for the following hyper-
parameters:

—
09z 0.085 L
090 0.080

088 oors{ |

g 086 2 0070

082 0.080

— troin: 0924 0.055

] EY W0 10 200 250 300 3 50 W 150 200 250 300
Epoch Epoch

Figure 6. Evolution of R?-score (left) and RMSE vs training
epochs. Curves corresponding to training (blue) and testing (or-
ange) are overlayed.

e Number of training examples : 800

dropout rate : 0.2

learning rate : 0.001

weight decay : Se-4
e)\ scaling : 0.01

The results for R? and RMSE are represented in Figure @
We see a fairly large gap between the training and testing er-
ror. More importantly, testing error seems to stagnate early
on in the training process while training error continues to
decrease. This indicates that we are overfitting the data in
spite of a dropout rate of 0.2. A qualitative assessment of
the distributions generated is presented in Figure[7)and [§]

We are able to produce surrogates of high quality using
this approach. The maps shown in Figures [/|and 8 are al-
most identical and the relative errors we get remain in the
single digit percent. Such surrogates are not common in the
industry and this is a notable achievement. The downside is
that we still need a large number of training sample in order
to reach a good accuracy. We are interested in quantifying
the degradation in quality as we remove some training sam-
ples. Figure E] shows the The results for R and RMSE for
both training and test set as we remove samples. It shows
a relatively smooth degradation of R2-score as we reduce
the training set size from 800 to 200. While the training er-
ror seems insensitive to the number of training sample, the
test R?-score decreases -first slowly, it remains above 85%
for 500 training samples (which represents a 50-50 split in
this case) but then accelerates to reach 79% for 200 training
samples. In order to understand what these numbers mean
qualitatively, we look at the maps produced. Getting a good
surrogate for saturation is the most valuable and challenging
outcome as the solution is typically quite nonlinear and can
vary a lot from one permeability field to another. Moreover,
a good understanding of flow path means that we are able
to predict with very high accuracy the fluids fractions at the
well level. We show the results obtained for 200 training
samples in Figure [I0]

We can identify the model with the smallest difference
between training and testing scores. The best scenario in

Simu lation CNN Difference

S000
8000
7000
6000
5000
8000
8000
7000
6000
5000
8000
8000
7000
6000
5000
9000
8000
7000
6000
5000
8000
8000
7000
6000
5000 =004
0.04
8000
7000 g.{’z
6000 -0.02
5000 =004

Figure 7. Pressure distribution map at different time steps for a test set. The left-most column is the pressure computed using a commercial
simulator and the middle column is the result computed by our CNN. The right-most column represent the difference between the two.
This model was trained using 800 samples

0.05

50

-0.05

0.04
0.02

100

-0.02

0.02

200

-0.02
=004

0.04
0.02

500

-0.02
-0.04

S EE En e

0.04
0.02

=002

1000

2000

Simulation

CNN
BNl KN | - [
. 08 —— I':'Si" 0.1
| 5 < S It
BNl E-N (- [
Nl E-N FE =l
| o [2 el
08
X : F 06
EeNl: E=Ni
_ 02
08
&0 [
: 02

Figure 8. Saturation distribution map at different time steps for a test set. The left-most column is the saturation computed using a
commercial simulator and the middle column is the result computed by our CNN. The right-most column represent the difference between
the two. This model was trained using 800 samples

0.1

50

100

0.1

200

-01

500

1000

2000

R? score
RMSE

s 1
200 300 400 500 600 700 800 200 300 400 500 600 700 800

Figure 9. Evolution of R?-score (left) and RMSE vs number of
training samples. Curves corresponding to training (blue) and test-
ing (orange) are overlayed.

Figure 10. Saturation distribution map at different time steps for
a test set. The left-most column is the saturation computed using
a commercial simulator and the middle column is the result com-
puted by our CNN. The right-most column represent the difference
between the two. This model was trained using 200 samples

terms of difference betwwen training and testing error was
obtained for the following hyper-parameters:

e Number of training examples : 800
e dropout rate : 0.4

e learning rate : 0.01

weight decay : 0.001
e J\scaling: 0.1

The training curves for this case is represented in Figure[TT]

We see on the distributions displayed in Figure [I2] the
evolution of the saturation with training epochs. We see that
the resolution and fidelity of these maps increases rapidly
over the first 50 epochs and then stagnates as indicated in
the evolution of the R?-score plotted in Figure @

5.3. Discussion

Even though the RMSE and R2-score could be further
improved and the gaps between training and testing error
remain quite significant, the qualitative assessment of our
results shows good predictability in terms of mapping of
path of preferential flow, flow barriers and breakthrough to

— troin: 0808
00 test: 0850

2 so 75 10 15 150 15 200 35 o 75 100 15 10 15 200
Epoch Epoch

Figure 11. Evolution of R?-score (left) and RMSE (right) vs train-
ing epochs for the case with the lowest difference between training
and testing error. Curves corresponding to training (blue) and test-
ing (orange) are overlayed.

Epoch 10
oo
226063

-

w&\. #

o

f o L A
= an'

Epoch 20
coooe
SRG&S

Epoch 30
cooos
SRGES

Epoch 40
coooo
22652

g s

Epoch 50
osooo
SR6ES

._..-n"

=3

i

Epoch 200
ooose
22653

Figure 12. Saturation distribution map at 500 days for different
epochs of training. The left-most column is the saturation com-
puted using a commercial simulator and the middle column is the
result computed by our CNN. The right-most column represent
the difference between the two. This model was trained using 800
samples

producing wells. Such a model would be valuable to com-
pute water breakthrough at wells. Fractional flow is one of
the most non-linear -and difficult to simulate- quantity at
the wells level. The exercise we overtake is to map directly
the distributions of pressures and saturation in the reservoir.
Most existing studies focus on the matching of saturations
at given points or the production of fluids at well locations.
Not only is the mapping quite accurate but most of the fea-
tures are conserved for low numbers of training samples and
an optimal performance is achieved with a small number of
epochs (typically less than 100). As we keep training, the
performance does not improve much. This indicates that
training time can be cut in half without sacrificing too much
in terms of performance. Figure [T3| shows the compared
productions of water at the four corner wells for one of the
test cases. The match is very close with a RMSE error of
1072,

Ecipse ey
09 —e—onn 09 —e—onN

Water cut
e

\

0 0
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 200C
days time.

Eclipse —— Eclipse.
09 —e—onn 09 —e—cnN

Water cut
Water cut

Qg

0 0
0 200 400 600 800 1000 1200 1400 1600 1800 2000 O 200 400 600 800 1000 1200 1400 1600 1800 200C

Figure 13. Evolution of watercut vs time at the 4 producer wells in
one realization of the SPE10. The Eclipse simulation results are in
blue while the CNN computed results are in orange circles.

6. Conclusion/Future Work

This work demonstrates the capability of CNN encoder-
decoder architecture coupled with a physics based loss
function to match simulation results with a high degree of
accuracy (low RMSE, high R?). The network is able to
solve for the spatial and time evolution of the saturation
and pressure. From Section 5, we are able to conclude
that a large data set with some regularization was able to
perform well for this problem. Dropout has a regularizing
effect on the model up to a certain point and leads to the
discrepancy between the training error and test error to
decrease. The learning rate/weight decay on the other hand
do not seem to have an effect on the model. This is certainly
related with the fact that most of the learning occurs during
the first few epochs. It could also be explained by the
reduced size of our dataset with a few hundred “images”
used to calibrate the regression model. This is made
possible by our engineered loss function that instills more
physics to the model parameterization. The effect of A
scaling demonstrates this. A starter code package has been
uploaded to: |https://drive.google.com/open?
1d=14TZYsRzcLx6f99IGbho_3puE9NUYiulv

In the future we would like to investigate the following:

e Further study the A scaling and try new features
(derivative based)

e Learn more time steps/predict more time steps.

Learn a 3-D system (3-D convolutions will be needed)

e Learn scenarios with varying well placement

Expand the loss function to include other physics
(gravity, capilarity)

e Learn using partial/missing data or introduce noise to
the data

e Deduce oil production from images/use oil production
as a feature

7. Contributions and Acknowledgements

Every team member contributed to nearly every task of
the project. Each team member was extensively involved in
the 3 most laborious tasks of this project:

e QC the hdf5 data manipulation
e Debugging the network code
e Changing the network for the purposes of this study

This section lists the most distinguishing contributions by
each member.

7.1. Cedric Fraces Gasmi

e Training runs

e Conducted the most through literature review and
found the most promising network architecture

e Designing and running the hyper-parameter search ex-
periments

7.2. Jihoon Park

e Generated training data by completing thousands of
SPE10 simulation runs

e Organized the data into a usable hdf5 files

e Modified the neural network architecture for the
project

7.3. Dong Hee Song

e Modified training, test, and output data sets
e Training runs on google cloud compute

e Analyzing the output files of the hyper-parameter
search experiments

7.4. Github Repository and Libraries

The starting point of this project was the work done
by Zabaras et al. [10]. The original Github repository
which was the starting point of our network archeticture
can be found at: https://github.com/cics-nd/
dcedn—gcs.

This project incorporated the following libraries: Py-
Torch [[1L1]], Matplotlib/Seaborn [6], NumPy [3]], and scikit-
learn [[12].

https://drive.google.com/open?id=14TZYsRzcLx6f99IGbho_3puE9NUYiulv
https://drive.google.com/open?id=14TZYsRzcLx6f99IGbho_3puE9NUYiulv
https://github.com/cics-nd/dcedn-gcs.
https://github.com/cics-nd/dcedn-gcs.

8. References/Bibliography

References

(1]
(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

J. J. Arps et al. Analysis of decline curves. Transactions of
the AIME, 160(01):228-247, 1945.

F. Brons. On the use and misuse of production decline
curves. Producers Monthly, 27(9):76-70, 1963.

N. Developers. Numpy. NumPy Numpy. Scipy Developers,
2013.

M. Fetkovich et al. A simplified approach to water influx
calculations-finite aquifer systems. Journal of Petroleum
Technology, 23(07):814-828, 1971.

M. J. Fetkovich et al. Decline curve analysis using type
curves. Journal of Petroleum Technology, 32(06):1-065,
1980.

J. Hunter, D. Dale, and M. Droettboom. Matplotlib. The
Architecture of Open Source Applications, 2:165-178, 2011.
A. Karpatne, W. Watkins, J. Read, and V. Kumar. Physics-
guided neural networks (pgnn): An application in lake tem-
perature modeling. arXiv preprint arXiv:1710.11431,2017.
L. W. Lake. A generalized approach to primary hydrocarbon
recovery, volume 4. Elsevier Science Limited, 2003.

C. C. Mattax, R. L. Dalton, et al. Reservoir simulation
(includes associated papers 21606 and 21620). Journal of
Petroleum Technology, 42(06):692—-695, 1990.

S. Mo, Y. Zhu, N. Zabaras, X. Shi, and J. Wu. Deep convo-
lutional encoder-decoder networks for uncertainty quantifi-
cation of dynamic multiphase flow in heterogeneous media.
arXiv preprint arXiv:1807.00882, 2018.

A. Paszke, S. Gross, S. Chintala, and G. Chanan. Pytorch.
Computer software. Vers. 0.3, 1,2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Re-
search, 12:2825-2830, 2011.

M. Raissi. Deep hidden physics models: Deep learning of
nonlinear partial differential equations. The Journal of Ma-
chine Learning Research, 19(1):932-955, 2018.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics
informed deep learning (part i): Data-driven solutions of
nonlinear partial differential equations. arXiv preprint
arXiv:1711.10561,2017.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics
informed deep learning (part ii): Data-driven discovery
of nonlinear partial differential equations. arXiv preprint
arXiv:1711.10566, 2017.

Schlumberger. Eclipse industry-reference reservoir simula-
tor.

Society of Petroleum Engineers. SPE Comparative Solution
Project.

Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris.
Physics-constrained deep learning for high-dimensional sur-
rogate modeling and uncertainty quantification without la-
beled data. arXiv preprint arXiv:1901.06314, 2019.

	. Introduction
	. Related Work and Background
	. Methods
	. Dataset and Features
	. Experiments/Results/Discussion
	. Experiments
	. Results
	. Discussion

	. Conclusion/Future Work
	. Contributions and Acknowledgements
	. Cedric Fraces Gasmi
	. Jihoon Park
	. Dong Hee Song
	. Github Repository and Libraries

	. References/Bibliography

